首页
学术报告:Approximation in weighted Bergman spaces and Hankel operators on strongly pseudoconvex domain
报告时间:2019年10月24日(星期四)下午3:30-4:30
报告地点:理学院 西教五 416
报告题目:Approximation in weighted Bergman spaces and Hankel operators on strongly pseudoconvex domain
报告嘉宾:胡璋剑 教授(湖州师范学院)
报告摘要:
Suppose D is a bounded strongly pseudoconvex domain in Cn with smooth boundary, and let ρ be its defining function. For 1<p<∞ and α>-1 we show that the weighted Bergman projection Pα is bounded on Lp(D,|р|αdV). With non-isotropic estimates for α and Stein’s theorem on non-tangential maximal operators, we prove that bounded holomorphic functions are dense in the weighted Bergman space Ap(D,|ρ|αdV) and hence Hankel operators can be well defined on these spaces. For all 1<p,q<∞,we characterize bounded (resp. compact) Hankel operators from p-th weighted Bergman space to q-th weighted Lebesgue space with possibly different weights.
嘉宾简介:
胡璋剑,湖州师范学院教授。浙江省有突出贡献中青年专家、浙江省“151”第一层次人才,享受国务院政府特殊津贴。厦门大学、苏州大学博士生导师。从事多复变函数论研究工作,先后在《中国科学》、《J. Funct. Anal.》、《J. Geom. Anal.》等期刊发表论文70余篇;主持国家自然科学基金面上项目4项、省部级科研项目6项;获教育部高等学校科学研究优秀成果自然科学二等奖和浙江省科学技术一等奖等科技奖励。