首页
学术报告:A magic cross validation theory for large margin classifiers
报 告 人:Professor Hui Zou(University of Minnesota)
时 间: 6月28号(周四)上午10:00-11:30
地 点: 理学院(西教五)416
Abstract: Cross validation is the most commonly used technique in machine learning for tuning the learning algorithm in order to achieve better generalization error rate. In this talk we present a magic CV theory which can allow users to very efficiently tune the support vector machine and related algorithms. The theory also provides a straightforward way to prove the Bayes consistency of these algorithms. We demonstrate our method on extensive simulations and benchmark data studies.
报告人简介:Zou Hui教授是明尼苏达大学统计系教授,国际数理统计学会会士(IMS Fellow)。Zou Hui 教授于2011年获得IMS Tweedie Award以及2013年获得COGS Outstanding Faculty Award。Zou Hui 教授曾任或现任统计学顶级期刊《Journal of the Royal Statistical Society, Series B 》、《Annals of Statistics》以及《Journal of the American Statistical Association》(与《Biometrika》合称统计学四大天王期刊)的Associate Editor,并任机器学习顶级期刊《Journal of Machine Learning Research》的Action Editor。
Zou Hui教授自2005年至今已在统计学四大天王期刊发表近30篇论文。Zou Hui教授的工作当选2006年“Fast Breaking Paper in Mathematics”以及2008年“New Hot Paper in Mathematics”;Zou Hui教授于2014-2017年均被评为ISI高被引科学家(ISI Highly Cited Researcher)。截至目前,Zou Hui教授所发表的论文合计被引用次数高达19154次;特别,Zou Hui教授和Hastie教授2005年合作提出的Elastic Net,2006年Zou Hui教授提出的Adaptive LASSO方法,和Hastie教授、Tibshirani教授合作提出的稀疏主成分分析方法被引用次数分别高达7633次、4045次和1966次。Zou Hui教授也是最早在国内参与提出统计优化学科的专家之一。